7 Input Requirements and Program Output for SAM.sed

Purpose

SAM.sed calculates sediment discharge rating curves for the bed material load using sediment transport functions. The input and output vary only insofar as different functions are selected. This chapter will address the input data requirements and discuss the associated output. Be aware that there is an option, SAM.aid (under Tools on the SAMwin main menu) that can provide guidance in the selection of sediment transport functions.

General

The SAM.sed module expects an input file designated as *xxxxxxx*.<u>si</u>, where *x* can be any DOS acceptable character, including a space (but no embedded spaces), i.e., acceptable file names could be *say.si* or *ITSNEVER.SI*. SAM.sed will write a corresponding file *xxxxxxxx*.<u>so</u>, which is the sediment transport calculation's output file; and a *xxxxxxxx*.<u>yi</u> file which may be used as an input file to SAM.yld.

🛢, SAM Hydra	aulic Design Package	
File Edit Ru	n View Tools Help	
B Hydra	ulic Function Input 🔹 🕨	
Pro Sedime	ent Transport Input ent Yield Input	C:\1Manual Test\man.prj
Hyd. Input	man.hi	C:\1Manual Test\man.hi
Sed Input	SAM.sed Input File	Path to SAM.sed Input File
Yld Input	SAM.yld Input File	Path to SAM.yld Input File
Project Description		

Figure 7.1. Accessing the Sediment Transport Input screens.

SAM.hyd generally creates a ".si" file. The ".si" file can be created or edited in SAMwin as shown in Figure 7.1. A sediment transport input file can also be created or edited using a system editor, or, in a DOS window only, by using SAM.m95 in combination with a TAPE95 from an HEC-2 execution (see Appendix H). In some cases, modifications to the SAM.hyd-created ".si" file may be necessary before sediment transport calculations can be made.

The sample data sets used in the input and output discussions are those provided with the SAM package in the SEDPC.LIB files.

Program execution

The sediment transport calculations are made in SAMwin from the "Solve" button on the input screen, Figure 7.2, or from the "Run" dropdown menu on the opening screen, Figure 7.1. This second option is useful if a ready-to-run data set exists.

Selected output will scroll to the screen. The output coming to this window cannot be selected by the user. All output will be saved in the default output filename.

1										
ransport Functions										
Toffaleti.	T of	ffaleti-Scho	iklitsch	Laurser	n(Copeland)		Einstein(Be	d-Load)		-
l ∐ Vana		NACE OV ON		🗖 Yang D	50		Profitt(Suthe	erland)		Clear
	Ш МР	M(1340)		L rang,o				,		Ciear
Einstein(Total-Load)		wnlie,D50			-White,D50		Engelund-H	ansen		
Einstein(Total-Load)	Bro Tof	mi(1546) wnlie,D50 ffaleti-MPM		Ackers-	-White,D50 948),D50		Engelund-H Schoklitsch	ansen		Check
Colby	I MP Bro Tof Lau	mi(1946) ownlie,D50 ffaleti-MPM ursen(Mado	den),1985	Ackers- MPM(1) Parker	-White,D50 948),D50		Engelund-H Schoklitsch Van.Rijn	ansen		Check
Einstein(Total-Load) Ackers-White. Colby	U MP Brc Tof V Lau	m(1946) ownlie,D50 ffaleti-MPM ursen(Mado	den),1985	Ackers- MPM(1)	-White,D50 948),D50		Engelund-H Schoklitsch Van.Rijn	ansen		Check
Fang. Einstein(Total-Load) Ackers-White. Colby	U MP Bro Tof V Lau	m(1946) ownlie,D50 ffaleti-MPM ursen(Mado	den),1985	Ackers- MPM(1)	-White,D50 948),D50		Engelund-H Schoklitsch Van.Rijn	lansen		Check
Colby		m(1346) pwnlie,D50 ffaleti-MPM ursen(Mado	den),1985	Ackers- MPM(1: Parker	-White,D50 948),D50		Engelund-H Schoklitsch Van.Rijn	lansen		
Control C		fm(1346) ownlie,D50 ffaleti-MPM ursen(Mado	den),1985	Ackers- MPM(1)			Engelund-H Schoklitsch Van.Rijn	lansen	9	
I range Einstein(Total-Load) Ackers-White. Colby		fm(1348) ownlie,D50 ffaleti-MPM ursen(Mado	den),1985	Ackers- MPM(1: Parker	White,D50 948),D50	6	Engelund-H Schoklitsch Van.Rijn 7	ansen 8	9	
Control of the second sec		fall(1946) ownlie,D50 ffaleti-MPM ursen(Mado	den),1985	Ackers- MPM(1: Parker	White,D50 948),D50	6	Engelund-H Schoklitsch Van.Rijn 7	lansen	9	
		fall(1946) ownlie,D50 ffaleti-MPM ursen(Mado	den),1985	Ackers- MPM(1: Parker	White,D50 948),D50		Engelund-H Schoklitsch Van.Rijn 7	lansen	9	
		im(1346) jownlie,D50 ffaleti-MPM ursen(Mado	den),1985	Ackers- MPM(1: Parker	White,D50 948),D50	6	Engelund-H Schoklitsch Van.Rijn	lansen	9	
I orange Einstein(Total-Load) Ackers-White. Colby		m(1340) jownlie,D50 (ffaleti-MPM ursen(Mado	den),1985	Ackers- MPM(1: Parker	White,D50 948),D50	6	Engelund-H Schoklitsch Van.Rijn	lansen	9	
I orange Einstein(Total-Load) Ackers-White. Colby		m(1340) pwnlie,D50 ffaleti-MPM ursen(Madd	den),1985	Ackers Parker	White,D50 948),D50	2 2 2 3 3 3 3 3 3	Engelund-H Schoklitsch Van.Rijn	ansen	9	Check

Figure 7.2. Sediment transport calculations input screen.

Title Records.

This area allows the user to input descriptive strings, up to 78 characters long, for use in identifying data sets. This input is optional.

Transport Functions. All sediment transport functions available in SAM.sed are listed here. The user can select functions to be calculated. The Laursen-Madden (1985) function is simply the one function that is on by default when the input file has been created by SAM.hyd.

Flow Characteristics. Generally, these fields would be filled with the calculated data from a SAM.hyd-generated input file. However, the user can input this information if so desired. A "column" of numbers is considered together for calculation purposes. The maximum is 10 columns.

Bed Material Gradation. This input is necessary for these calculations, Figure 8.3. DMAX is a required input whereas the specific gravity of sediment is optional (the value shown is the default value). The program will accept up to 18 points on the bed material gradation, and they **must** be input from largest grain size to smallest. However, a grain size for 100% finer and for 0% finer is not required.

ed Material Gradati	ion —	_																
DMAX(mm)												Sp	ecific I	Gravity	of Sed	iment	2.	65
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Particle Size (mm)																		
Percent Finer (%)																		

Figure 7.3. Bed Material Gradation data input screen.

"+" **Box.** This button toggles, opens/closes, a small window which will receive selected output. The output coming to this window cannot be selected by the user.

Display Entire Output File. When this box is checked the output file will open in its own window (using Notepad) after calculations are complete. If this button is not checked, some input will echo to the screen in the area mentioned above. The entire output file can also be viewed by checking the View menu of the SAM main window and selecting "Sediment Transport Results."

Solve. This button causes SAM.sed to execute.

Sample Input Data

In addition to the SAMwin option to create or edit a sediment transport input file, the input data file can be prepared with a system editor, or by the hydraulics calculations in SAM.hyd. (SAM.m95, which reads the HEC-2 output to create a SAM.sed input file, is not available in SAMwin). Of these, however, only

SAM.hyd provides the "effective" value for sediment transport variables. If channel and overbanks are specified in the SAM.hyd file, only the channel variables are transferred to the ".si" file. The discharge is the total discharge and is used only as an identifier and not used in the calculations.

The following example shows input data as created by running TEST 1C in SAM.hyd. Notice that only the Laursen (Madden) function shows "YES." Other transport functions can be "turned on" for computation with an editor or the SAMwin data entry windows. The SAM.hyd input file from which this file was developed contained a PF-record so this required record is already in the file. If the record were not in the SAM.sed input file, it would also have to be added.

Τ1	F	ILE WRITT	FEN BY	SAM.hyd						
TF	TOFFAL	ETI.		NO						
\mathbf{TF}	YANG.			NO						
\mathbf{TF}	EINSTE	IN (TOTAL-	-LOAD)	NO						
\mathbf{TF}	ACKERS	-WHITE.		NO						
TF	COLBY			NO						
\mathbf{TF}	TOFFAL	ETI-SCHOR	KLITSC	NO						
\mathbf{TF}	MPM(19	48).		NO						
\mathbf{TF}	BROWNL	IE,D50		NO						
\mathbf{TF}	TOFFAL	ETI-MPM		NO						
\mathbf{TF}	LAURSE	N(MADDEN)	,1985	YES						
\mathbf{TF}	LAURSE	N (COPELAI	ND)	NO						
TF	YANG,D	50		NO						
TF	ACKERS	-WHITE, DS	50	NO						
\mathbf{TF}	MPM(19	48),D50		NO						
\mathbf{TF}	PARKER			NO						
TF	EINSTE	IN (BED-LO	DAD)	NO						
TF	PROFIT	T (SUTHERI	LAND)	NO						
TF	ENGELU	ND-HANSEN	N	NO						
TF	SCHOKL	ITSCH		NO						
TF	VAN.RI	JN		NO						
VE	1.29	2.77	5.41	7.41	10.14					
DE	0.76	3.23	7.23	9.71	13.28					
WI	103.	111.7	127.9	138.8	148.5					
QW	100	1000	5000	10000	20000					
ES5	521E-6									
WΤ	50									
PF				1	.8	98	.48	50	.25	16
ŚŚΙ	END									

Sample Output Data

Selected results are printed to the screen as the program executes. The entire output is saved in the default output file. Also, the sediment transport rating curve needed for the sediment yield calculations is written to the default SAM.yld file.

Output Data Sets

The following output description refers to the output of Test 1C listed above. The Ackers-White,D50, and the Van Rijn functions have been selected in order to point out certain associated output. * SAMwin --- HYDRAULIC DESIGN PACKAGE FOR FLOOD CONTROL CHANNELS * SEDIMENT TRANSPORT CALCULATIONS * Version 1.0 * A Product of the Flood Control Channels Research Program * Coastal & Hydraulics Laboratory, USAE Engineer Research & Development Center * in cooperation with * Owen Ayres & Associates, Inc., Ft. Collins, CO

Msg 1: SED. READING INPUT DATA FROM FILE [hydtests.si] THIS DIRECTORY.

TABLE 1. LIST INPUT DATA.

T1TF LAURSEN (MADDEN), 1985 YES TF ACKERS-WHITE, D50 YES TF VAN.RIJN YES TR VE 1.29 2.77 5.41 7.41 10.14 3.23 7.23 9.71 13.28 DE 0.76 103 100 127.9 138.8 5000 10000 148.5 20000 WΤ 111.7 QW 1000 ES.00052 50 WΤ PF 1.0 1.8 98 .48 50 .25 16 SP 2.65 \$\$END

BED SEDIMENT FRACTIONS CALCULATED FROM PF-DATA.

NO	PERCENT FINER %	PARTICLE SIZE mm	INCREMENTAL FRACTION
8	16.000	0.2500	
9	53.836	0.5000	0.3783586
10	100.000	1.0000	0.4616414

TABLE 3. PROPERTIES OF THE WATER

#	TEMP DEG F	RHO #-S2/FT4	KINEMATIC VISCOSITY SF/SEC x10,000	UNIT WT WATER #/FT3
1 2 3 4	50.0 50.0 50.0 50.0	1.940 1.940 1.940 1.940	1.411 1.411 1.411 1.411 1.411	62.411 62.411 62.411 62.411
5	50.0	1.940	1.411	62.411

TABLE	2.1.	HYDRAULTC	PARAMETERS
тарыы	~	TITDIGGUILC	THUHUDIUN

	TOTAL		EFFE	CTIVE		EN	JERGY	
Ν	DISCHARGE	DISCHARGE	VELOCITY	DEPTH	WIDTH	5	SLOPE	
	CFS	CFS	FPS	FT	FT	E	T/FT	
1	100.	101.	1.29	0.76	103.00	0.00	05200	
2	1000.	999.	2.77	3.23	111.70	0.00	05200	
3	5000.	5003.	5.41	7.23	127.90	0.00	05200	
4	10000.	9987.	7.41	9.71	138.80	0.00	05200	
5	20000.	19997.	10.14	13.28	148.50	0.00	05200	
	Т	ABLE 4.1 L	AURSEN (MADD	EN),1985 M	IETHOD =	NO. 13		
SI	ZE GRA	IN PERCEN	Т	SEDIMENT	TRANSPO	RT		
CLI	ASS SI	ZE IN CLAS	S POTENTI	AL CAPA	CITY	CONC		
no	D C	m %	TONS/D	AY TONS	/DAY	PPM		
	8 0.	354 37.84	6.58286	2.49	068	9.2248	3	
	90.	707 46.16	0.100000	E-06 0.461	641E-07	0.17098	3E-06	
Q,	CFS = 10	0.000	QS, TOTA	L = 2.49	068	9.2248	3	
	Т	ABLE 4.1 L	AURSEN (MADD	EN),1985 M	IETHOD =	NO. 13		
SI	ZE GRA	IN PERCEN	Т	SEDIMENT	TRANSPO	RT		
CLI	ASS SI	ZE IN CLAS	S POTENTI	AL CAPA	CITY	CONC		
no	o m	m %	TONS/D	AY TONS	/DAY	PPM		
	8 0.	354 37.84	64645.7	2445	9.3	452.95	5	
	9 0.	707 46.16	6936.62	3202	.23	59.301	<u> </u>	
Q,	CFS = 20	000.0	QS, TOTA	L = 2766	1.5	512.25	5	
	Т	ABLE 4.1 A	CKERS-WHITE	,D50 M	IETHOD =	NO. 16		
SI	ZE GRA	IN PERCEN	Т	SEDIMENT	TRANSPO	RT		
CLI	ASS SI	ZE IN CLAS	S POTENTI	AL CAPA	CITY	CONC		
no	o m	m %	TONS/D	AY TONS	/DAY	PPM		
	1 0.	466 100.00	6.72704	6.72	704	24.915	5	
Q,	CFS = 10	0.000	QS, TOTA	L = 6.72	704	24.915	5	
	Т	ABLE 4.1 A	CKERS-WHITE	,D50 M	IETHOD =	NO. 16		
SI	ZE GRA	IN PERCEN	Т	SEDIMENT	TRANSPO	RT		
CLI	ASS SI	ZE IN CLAS	S POTENTI	AL CAPA	CITY	CONC		
no	m c	m %	TONS/D	AY TONS	/DAY	PPM		
	1 0.	466 100.00	87227.4	8722	7.4	1615.3	3	
Q,	CFS = 20	000.0	QS, TOTA	L = 8722	7.4	1615.3	3	
	V	ANRIJN CO	NCENTRATION	CAPACITY	PROFILE	BY SIZE	CLASS	IN MG/L
	SD(I)MM	REF CONC	Y/D=.1 Y/	D=.2 Y/D)=.3 Y/	D=.5	Y/D=.7	Y/D=1.0
	0.35367	1675.8	0.3	0.0	0.0	0.0	0.0	0.0
	0 70724	694.5	0.0	0.0	0.0	0.0	0.0	0.0
	0./0/34							
	0.70734		0 0	0 0	0 0	0.0	0.0	0.0
	TOTAL	2370.3	0.3	0.0	0.0			0.0
	TOTAL	2370.3	0.3	0.0	0.0			0.0
	TOTAL	2370.3 ABLE 4.1 V	0.3 AN.RIJN	0.0 M	IETHOD =	NO. 23		010
	TOTAL T	2370.3 ABLE 4.1 V	0.3 AN.RIJN	0.0 M	IETHOD =	NO. 23		
SI	TOTAL TOTAL T	2370.3 ABLE 4.1 V	0.3 AN.RIJN T	SEDIMENT	IETHOD =	NO. 23 RT		
SIZ	TOTAL TOTAL ZE GRA ASS SI	2370.3 ABLE 4.1 V IN PERCEN ZE IN CLAS	U.3 AN.RIJN T S POTENTI	U.U M SEDIMENT AL CAPA	IETHOD = TRANSPO	NO. 23 RT CONC		
SI2 CL2 no	TOTAL TOTAL ZE GRA ASS SI	2370.3 ABLE 4.1 V IN PERCEN ZE IN CLAS m %	U.3 AN.RIJN T S POTENTI TONS/D	SEDIMENT AL CAPA AY TONS	IETHOD = TRANSPO CITY CAY	NO. 23 RT CONC PPM		
SI2 CL2 no	TOTAL TOTAL ZE GRA ASS SI o m 8 0.	2370.3 ABLE 4.1 V IN PERCEN ZE IN CLAS m % 354 37.84	U.3 AN.RIJN T S POTENTI TONS/D 8.77455	SEDIMENT AL CAPA AY TONS 3.31	ETHOD = TRANSPO CITY DAY .993	NO. 23 RT CONC PPM 12.296	 ;	
SI2 CL2 no	TOTAL TOTAL ZE GRA ASS SI D m 8 0. 9 0.	2370.3 ABLE 4.1 V IN PERCENS m % 354 37.84 707 46.16	0.3 AN.RIJN T S POTENTI TONS/D 8.77455 2.75041	SEDIMENT AL CAPA AY TONS 3.31 1.26	ETHOD = TRANSPO CITY DAY 993 970	NO. 23 RT CONC PPM 12.296 4.7026		
SI2 CL2 no	TOTAL TOTAL ZE GRA ASS SI D m 8 0. 9 0.	2370.3 ABLE 4.1 V IN PERCEN ZE IN CLAS m % 354 37.84 707 46.16	0.3 AN.RIJN T S POTENTI TONS/D 8.77455 2.75041	SEDIMENT AL CAPA AY TONS 3.31 1.26	ETHOD = TRANSPO CITY JDAY 993 970	NO. 23 RT CONC PPM 12.296 4.7026	 	

		VANRIJN	CONCE	NTRAT	ION CAPA	CITY I	PROFILE	BY SIZE	E CLASS	IN MG/L
	SD(I)MM	REF C	ONC Y/E	=.1	Y/D=.2	Y/D=	=.3 Y	/D=.5	Y/D=.7	Y/D=1.0
	0.35367 0.70734	4262 4208	8.9 365 2.9 42	0.2 5.7	1589.8 90.0	915 32	5.0 2.1	0.0	169.1 1.4	49.4 0.1
	TOTAL	8471	1.9 407	5.9	1679.8	947	7.0	0.0	170.5	49.6
		TABLE 4	.1 VAN.	RIJN		ME	ETHOD =	NO. 23		
SIZ CLA nc	E GI ASS 5 9 8 (9 (RAIN SIZE I mm 0.354 0.707	PERCENT N CLASS % 37.84 46.16	POTE TON 2264 8532	SED NTIAL S/DAY 17. 2.8	IMENT CAPAC TONS/ 85666 39388	TRANSP CITY /DAY 5.7 3.5	ORT CONC PPM 1586.4 729.42	L 2	
Q,	CFS = 2	20000.0		QS, T	OTAL =	12505	55.	2315.8	3	
TAE	BLE 5.0	SUMMARY	TABLE:	BED-1	MATERIAL	SEDIN	MENT DI	SCHARGE,	TONS/I	PAY
Q NO 1 2 3 4 5	WA3	TER HARGE 100.00 1000.00 5000.00 0000.00 0000.00	TRA LAURS (MADDEN) 2 150 3276 9779 27661	NSPOR EN .49 .64 .38 .14 .49	T FUNCTIO ACKER WHITE, 1 64 924 2904 8722	DNS 5- 550 6.73 6.38 0.40 5.88 7.36	VAN 8 33 125	.RIJN 4.59 271.79 683.24 187.63 055.28		
End	l of Job	PRI	NTOUT SAV	ED IN	FILE hyd	dtests	5.SO			

Output Data Description

Table 1 echoes the input data file. An un-numbered table lists the "Bed Sediment Fractions Calculated From PF-Data." The properties of water, Table 3, are calculated from the water temperature at sea-level. The hydraulic parameters from input data are listed in Table 2.1. Effective discharge is the product of the width, depth, and velocity and represents channel discharge. Table 4.1 presents detailed results of the sediment transport calculations by discharge, in rows by sediment size class and in columns as labeled. Notice the discharges are the total discharge, not channel discharge. There will also be a separate Table 4.1 for each sediment transport function selected in the input file. Only two discharges' output for each function are shown here.

The Van Rijn function provides additional printout – for each water discharge, the sediment concentration profile by size class is calculated in mg/l. Table 5 is a summary of the calculated total bed-material sediment discharge, in rows according to water discharge and in columns by sediment transport function.

Sample of Data Written to SAM.yld Input File

SAM.sed writes the sediment concentration rating curve calculated for each sediment transport function selected to the SAM.yld input file, as shown below.

TI	FILE	WRITTEN	BY SAM	l.sed	
TF	LAURS	EN (MADDE	N),1985	;	
QW	100	1000	5000	10000	20000
SC 9.	225 55	.792	243.	362.	512.
\$JOB					
TI	FILE	WRITTEN	BY SAM	l.sed	
TF	ACKEF	S-WHITE,	D50		
QW	100	1000	5000	10000	20000
SC24.	915	239.	684.	1076.	1615.
\$JOB					
TI	FILE	WRITTEN	BY SAM	l.sed	
TF	VAN.F	LIJN			
QW	100	1000	5000	10000	20000
SC16.	999	101.	643.	1229.	2316.
\$\$END)				

A separate sediment concentration rating curve is written for each sediment transport function selected in SAM.sed. If there is only one discharge in the SAM.sed input file, no SAM.yld input file is written, as no curve had been calculated. A warning message to that effect is written to the end of the output file and is echoed to the printout area on the input window.