Appendix B: List of Variables

- n =the composite n-value for the total where:
- V = average velocity
- R =the composite hydraulic radius
- γ = unit weight of water
- γ_s = unit weight of riprap
- $\gamma_{\rm w}$ = unit weight of water
- Θ = Shield's parameter
- $v = kinematic viscosity of water ft^2/sec$
- ρ_f = density of fluid
- ρ_s = density of sediment particles
- σ = the geometric standard deviation of the sediment mixture, where
- τ = bed shear stress
- τ_c = critical shear stress
- A = area
- A_i = cross-sectional area of panel i, $\Delta X D_i$
- B = effective width of flow (width of portion of cross section which is transporting sediment
- C = Chezy coefficient; also bed-material sediment concentration in parts per million
- C_B = bend correction for average velocity (V_{SS}/V_{AVE})
- CH = channel
- C_i = the panel Chezy roughness coefficient
- C_S = Coefficient of incipient failure
- C_T = coefficient for riprap thickness
- C_V = vertical velocity coefficient
- D = depth, ft; or local water depth; or effective depth of flow; or water depth
- d_{30CR} = Critical d_{30} (i.e. minimum d_{30}) size for stable riprap
 - d_{50} = median grain size of bed material, mm, or the particle size for which 50% of the sediment mixture is finer.
 - d_{84} = the particle size, ft, for which 84% of the sediment mixture is finer (Data ...
 - d_e = effective particle size for the mixture
 - D_i = average depth in the panel i, $\frac{1}{2}$ (A+B)
 - d_s = geometric mean of particles in size class i
- EFD = Effective Depth of the cross section
- EFW = Effective Width of the cross section
- $f(X_1)$ = is the difference between the calculated depth for X_1 and the true depth, or between Otrue and the calculated O for X_1

Appendix B List of Variables B-1

 $f(X_2)$ = is the difference between the calculated depth for X_2 and the true depth, or between Qtrue and calculated Q for X_2

 F_B = bed factor

 F_g = grain Froude number.

 F_S = side factor

 $g = acceleration of gravity - ft/sec^2$

 $G_{\rm sf} = \text{grain shape factor}$

 Gs_i = transport rate for size class i

i = panel number

 i_b = fraction of size class i in bed

k = number of panels

K = conveyance

 K_1 = Correction for side slope steepness

LCB = left channel bank

LOB = Left overbank

n = Manning's n value

 $n_i = n$ -value in wet panel i

 P_i = Wetted perimeter in wet panel i

Q = water discharge, cfs

R = hydraulic radius of the bed portion of the cross section, ft

RCB = right channel bank section

 $R_i = A_i / P_i$

 R_n = Reynolds number, 4RV/v

ROB = right overbank

S = slope; bed slope or energy slope

 S_e = energy slope

 S_f = Safety factor

 s_s = specific gravity of sediment particles.

T = temperature of fluid

 $U_* = \text{boundary shear velocity}, \sqrt{\text{gRS}}$

V = average flow velocity

 V_{AVE} = average channel velocity

W = channel width, ft; or bottom width

 X_1 = is the first trial value of Q, or of k_s

 X_2 = is the second trial value of Q, or of k_s

 X_3 = is the next trial value of Q, or of k_s

z =side slopes of the channel

Appendix B List of Variables B-2